Papers
Topics
Authors
Recent
2000 character limit reached

Hidden dualities in 1D quasiperiodic lattice models (2103.03895v4)

Published 5 Mar 2021 in cond-mat.dis-nn, cond-mat.mes-hall, and cond-mat.quant-gas

Abstract: We find that quasiperiodicity-induced transitions between extended and localized phases in generic 1D systems are associated with hidden dualities that generalize the well-known duality of the Aubry-Andr\'e model. These spectral and eigenstate dualities are locally defined near the transition and can, in many cases, be explicitly constructed by considering relatively small commensurate approximants. The construction relies on auxiliary 2D Fermi surfaces obtained as functions of the phase-twisting boundary conditions and of the phase-shifting real-space structure. We show that, around the critical point of the limiting quasiperiodic system, the auxiliary Fermi surface of a high-enough-order approximant converges to a universal form. This allows us to devise a highly-accurate method to obtain mobility edges and duality transformations for generic 1D quasiperiodic systems through their commensurate approximants. To illustrate the power of this approach, we consider several previously studied systems, including generalized Aubry-Andr\'e models and coupled Moir\'e chains. Our findings bring a new perspective to examine quasiperiodicity-induced extended-to-localized transitions in 1D, provide a working criterion for the appearance of mobility edges, and an explicit way to understand the properties of eigenstates close to and at the transition.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.