Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Self-consistent theory of mobility edges in quasiperiodic chains (2012.01450v1)

Published 2 Dec 2020 in cond-mat.dis-nn, cond-mat.quant-gas, cond-mat.stat-mech, and quant-ph

Abstract: We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials. Demarcating boundaries between localised and extended states in the space of system parameters and energy, mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr\'e-Harper model. The potentials in such systems are strongly and infinite-range correlated, reflecting their deterministic nature and rendering the problem distinct from that of disordered systems. Importantly, the underlying theoretical framework introduced is model-independent, thus allowing analytical extraction of mobility edge trajectories for arbitrary quasiperiodic systems. We exemplify the theory using two families of models, and show the results to be in very good agreement with the exactly known mobility edges as well numerical results obtained from exact diagonalisation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.