Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morphset:Augmenting categorical emotion datasets with dimensional affect labels using face morphing (2103.02854v2)

Published 4 Mar 2021 in cs.CV and cs.AI

Abstract: Emotion recognition and understanding is a vital component in human-machine interaction. Dimensional models of affect such as those using valence and arousal have advantages over traditional categorical ones due to the complexity of emotional states in humans. However, dimensional emotion annotations are difficult and expensive to collect, therefore they are not as prevalent in the affective computing community. To address these issues, we propose a method to generate synthetic images from existing categorical emotion datasets using face morphing as well as dimensional labels in the circumplex space with full control over the resulting sample distribution, while achieving augmentation factors of at least 20x or more.

Citations (6)

Summary

We haven't generated a summary for this paper yet.