Papers
Topics
Authors
Recent
2000 character limit reached

Malware Classification with Word Embedding Features

Published 3 Mar 2021 in cs.CR, cs.CL, and cs.LG | (2103.02711v1)

Abstract: Malware classification is an important and challenging problem in information security. Modern malware classification techniques rely on machine learning models that can be trained on features such as opcode sequences, API calls, and byte $n$-grams, among many others. In this research, we consider opcode features. We implement hybrid machine learning techniques, where we engineer feature vectors by training hidden Markov models -- a technique that we refer to as HMM2Vec -- and Word2Vec embeddings on these opcode sequences. The resulting HMM2Vec and Word2Vec embedding vectors are then used as features for classification algorithms. Specifically, we consider support vector machine (SVM), $k$-nearest neighbor ($k$-NN), random forest (RF), and convolutional neural network (CNN) classifiers. We conduct substantial experiments over a variety of malware families. Our experiments extend well beyond any previous work in this field.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.