Papers
Topics
Authors
Recent
2000 character limit reached

Auditory Attention Decoding from EEG using Convolutional Recurrent Neural Network

Published 3 Mar 2021 in eess.SP, cs.AI, cs.SD, and eess.AS | (2103.02183v1)

Abstract: The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD, the linear assumption was considered oversimplified and the decoding accuracy remained lower for shorter decoding windows. Recently, nonlinear models based on deep neural networks (DNN) have been proposed to solve this problem. However, these models did not fully utilize both the spatial and temporal features of EEG, and the interpretability of DNN models was rarely investigated. In this paper, we proposed novel convolutional recurrent neural network (CRNN) based regression model and classification model, and compared them with both the linear model and the state-of-the-art DNN models. Results showed that, our proposed CRNN-based classification model outperformed others for shorter decoding windows (around 90% for 2 s and 5 s). Although worse than classification models, the decoding accuracy of the proposed CRNN-based regression model was about 5% greater than other regression models. The interpretability of DNN models was also investigated by visualizing layers' weight.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.