Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Single-word Auditory Attention Decoding Using Deep Learning Model (2410.19793v1)

Published 15 Oct 2024 in eess.SP, cs.AI, cs.HC, cs.SD, eess.AS, and q-bio.NC

Abstract: Identifying auditory attention by comparing auditory stimuli and corresponding brain responses, is known as auditory attention decoding (AAD). The majority of AAD algorithms utilize the so-called envelope entrainment mechanism, whereby auditory attention is identified by how the envelope of the auditory stream drives variation in the electroencephalography (EEG) signal. However, neural processing can also be decoded based on endogenous cognitive responses, in this case, neural responses evoked by attention to specific words in a speech stream. This approach is largely unexplored in the field of AAD but leads to a single-word auditory attention decoding problem in which an epoch of an EEG signal timed to a specific word is labeled as attended or unattended. This paper presents a deep learning approach, based on EEGNet, to address this challenge. We conducted a subject-independent evaluation on an event-based AAD dataset with three different paradigms: word category oddball, word category with competing speakers, and competing speech streams with targets. The results demonstrate that the adapted model is capable of exploiting cognitive-related spatiotemporal EEG features and achieving at least 58% accuracy on the most realistic competing paradigm for the unseen subjects. To our knowledge, this is the first study dealing with this problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.