Papers
Topics
Authors
Recent
Search
2000 character limit reached

BERT based patent novelty search by training claims to their own description

Published 1 Mar 2021 in stat.ML, cs.CL, cs.LG, econ.EM, math.ST, and stat.TH | (2103.01126v4)

Abstract: In this paper we present a method to concatenate patent claims to their own description. By applying this method, BERT trains suitable descriptions for claims. Such a trained BERT (claim-to-description- BERT) could be able to identify novelty relevant descriptions for patents. In addition, we introduce a new scoring scheme, relevance scoring or novelty scoring, to process the output of BERT in a meaningful way. We tested the method on patent applications by training BERT on the first claims of patents and corresponding descriptions. BERT's output has been processed according to the relevance score and the results compared with the cited X documents in the search reports. The test showed that BERT has scored some of the cited X documents as highly relevant.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.