Papers
Topics
Authors
Recent
Search
2000 character limit reached

Visualizing Music Genres using a Topic Model

Published 27 Feb 2021 in cs.HC | (2103.00127v1)

Abstract: Music Genres serve as an important meta-data in the field of music information retrieval and have been widely used for music classification and analysis tasks. Visualizing these music genres can thus be helpful for music exploration, archival and recommendation. Probabilistic topic models have been very successful in modelling text documents. In this work, we visualize music genres using a probabilistic topic model. Unlike text documents, audio is continuous and needs to be sliced into smaller segments. We use simple MFCC features of these segments as musical words. We apply the topic model on the corpus and subsequently use the genre annotations of the data to interpret and visualize the latent space.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.