Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Pollen Imagery Classification with Generative Modeling and Mixup Training

Published 25 Feb 2021 in cs.CV, cs.LG, and eess.IV | (2102.13143v1)

Abstract: Deep learning approaches have shown great success in image classification tasks and can aid greatly towards the fast and reliable classification of pollen grain aerial imagery. However, often-times deep learning methods in the setting of natural images can suffer generalization problems and yield poor performance on unseen test distribution. In this work, we present and a robust deep learning framework that can generalize well for pollen grain aerobiological imagery classification. We develop a convolutional neural network-based pollen grain classification approach and combine some of the best practices in deep learning for better generalization. In addition to commonplace approaches like data-augmentation and weight regularization, we utilize implicit regularization methods like manifold mixup to allow learning of smoother decision boundaries. We also make use of proven state-of-the-art architectural choices like EfficientNet convolutional neural networks. Inspired by the success of generative modeling with variational autoencoders, we train models with a richer learning objective which can allow the model to focus on the relevant parts of the image. Finally, we create an ensemble of neural networks, for the robustness of the test set predictions. Based on our experiments, we show improved generalization performance as measured with a weighted F1-score with the aforementioned approaches. The proposed approach earned a fourth-place in the final rankings in the ICPR-2020 Pollen Grain Classification Challenge; with a 0.972578 weighted F1 score,0.950828 macro average F1 scores, and 0.972877 recognition accuracy.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.