Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic feature extraction, dose statistic prediction and dose mimicking for automated radiation therapy treatment planning (2102.12569v3)

Published 24 Feb 2021 in physics.med-ph and stat.ML

Abstract: Purpose: We propose a general framework for quantifying predictive uncertainties of dose-related quantities and leveraging this information in a dose mimicking problem in the context of automated radiation therapy treatment planning. Methods: A three-step pipeline, comprising feature extraction, dose statistic prediction and dose mimicking, is employed. In particular, the features are produced by a convolutional variational autoencoder and used as inputs in a previously developed nonparametric Bayesian statistical method, estimating the multivariate predictive distribution of a collection of predefined dose statistics. Specially developed objective functions are then used to construct a probabilistic dose mimicking problem based on the produced distributions, creating deliverable treatment plans. Results: The numerical experiments are performed using a dataset of 94 retrospective treatment plans of prostate cancer patients. We show that the features extracted by the variational autoencoder capture geometric information of substantial relevance to the dose statistic prediction problem and are related to dose statistics in a more regularized fashion than hand-crafted features. The estimated predictive distributions are reasonable and outperforms a non-input-dependent benchmark method, and the deliverable plans produced by the probabilistic dose mimicking agree better with their clinical counterparts than for a non-probabilistic formulation. Conclusions: We demonstrate that prediction of dose-related quantities may be extended to include uncertainty estimation and that such probabilistic information may be leveraged in a dose mimicking problem. The treatment plans produced by the proposed pipeline resemble their original counterparts well, illustrating the merits of a holistic approach to automated planning based on probabilistic modeling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tianfang Zhang (24 papers)
  2. Rasmus Bokrantz (7 papers)
  3. Jimmy Olsson (34 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.