Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object Detection (2102.12319v3)

Published 24 Feb 2021 in cs.CV and cs.RO

Abstract: Deep neural networks designed for vision tasks are often prone to failure when they encounter environmental conditions not covered by the training data. Single-modal strategies are insufficient when the sensor fails to acquire information due to malfunction or its design limitations. Multi-sensor configurations are known to provide redundancy, increase reliability, and are crucial in achieving robustness against asymmetric sensor failures. To address the issue of changing lighting conditions and asymmetric sensor degradation in object detection, we develop a multi-modal 2D object detector, and propose deterministic and stochastic sensor-aware feature fusion strategies. The proposed fusion mechanisms are driven by the estimated sensor measurement reliability values/weights. Reliable object detection in harsh lighting conditions is essential for applications such as self-driving vehicles and human-robot interaction. We also propose a new "r-blended" hybrid depth modality for RGB-D sensors. Through extensive experimentation, we show that the proposed strategies outperform the existing state-of-the-art methods on the FLIR-Thermal dataset, and obtain promising results on the SUNRGB-D dataset. We additionally record a new RGB-Infra indoor dataset, namely L515-Indoors, and demonstrate that the proposed object detection methodologies are highly effective for a variety of lighting conditions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.