Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trajectory-Based Meta-Learning for Out-Of-Vocabulary Word Embedding Learning (2102.12266v1)

Published 24 Feb 2021 in cs.CL

Abstract: Word embedding learning methods require a large number of occurrences of a word to accurately learn its embedding. However, out-of-vocabulary (OOV) words which do not appear in the training corpus emerge frequently in the smaller downstream data. Recent work formulated OOV embedding learning as a few-shot regression problem and demonstrated that meta-learning can improve results obtained. However, the algorithm used, model-agnostic meta-learning (MAML) is known to be unstable and perform worse when a large number of gradient steps are used for parameter updates. In this work, we propose the use of Leap, a meta-learning algorithm which leverages the entire trajectory of the learning process instead of just the beginning and the end points, and thus ameliorates these two issues. In our experiments on a benchmark OOV embedding learning dataset and in an extrinsic evaluation, Leap performs comparably or better than MAML. We go on to examine which contexts are most beneficial to learn an OOV embedding from, and propose that the choice of contexts may matter more than the meta-learning employed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Gordon Buck (1 paper)
  2. Andreas Vlachos (70 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.