Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Off and On-Policy Training in Model-Based Reinforcement Learning (2102.12194v2)

Published 24 Feb 2021 in cs.LG and cs.AI

Abstract: The combination of deep learning and Monte Carlo Tree Search (MCTS) has shown to be effective in various domains, such as board and video games. AlphaGo represented a significant step forward in our ability to learn complex board games, and it was rapidly followed by significant advances, such as AlphaGo Zero and AlphaZero. Recently, MuZero demonstrated that it is possible to master both Atari games and board games by directly learning a model of the environment, which is then used with MCTS to decide what move to play in each position. During tree search, the algorithm simulates games by exploring several possible moves and then picks the action that corresponds to the most promising trajectory. When training, limited use is made of these simulated games since none of their trajectories are directly used as training examples. Even if we consider that not all trajectories from simulated games are useful, there are thousands of potentially useful trajectories that are discarded. Using information from these trajectories would provide more training data, more quickly, leading to faster convergence and higher sample efficiency. Recent work introduced an off-policy value target for AlphaZero that uses data from simulated games. In this work, we propose a way to obtain off-policy targets using data from simulated games in MuZero. We combine these off-policy targets with the on-policy targets already used in MuZero in several ways, and study the impact of these targets and their combinations in three environments with distinct characteristics. When used in the right combinations, our results show that these targets can speed up the training process and lead to faster convergence and higher rewards than the ones obtained by MuZero.

Citations (1)

Summary

We haven't generated a summary for this paper yet.