Papers
Topics
Authors
Recent
2000 character limit reached

Baby Intuitions Benchmark (BIB): Discerning the goals, preferences, and actions of others

Published 23 Feb 2021 in cs.AI and cs.LG | (2102.11938v1)

Abstract: To achieve human-like common sense about everyday life, machine learning systems must understand and reason about the goals, preferences, and actions of others. Human infants intuitively achieve such common sense by making inferences about the underlying causes of other agents' actions. Directly informed by research on infant cognition, our benchmark BIB challenges machines to achieve generalizable, common-sense reasoning about other agents like human infants do. As in studies on infant cognition, moreover, we use a violation of expectation paradigm in which machines must predict the plausibility of an agent's behavior given a video sequence, making this benchmark appropriate for direct validation with human infants in future studies. We show that recently proposed, deep-learning-based agency reasoning models fail to show infant-like reasoning, leaving BIB an open challenge.

Citations (41)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.