Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Deep Learning Method for Textual Sentiment Analysis (2102.11651v1)

Published 23 Feb 2021 in cs.CL and cs.AI

Abstract: Sentiment analysis is known as one of the most crucial tasks in the field of natural language processing and Convolutional Neural Network (CNN) is one of those prominent models that is commonly used for this aim. Although convolutional neural networks have obtained remarkable results in recent years, they are still confronted with some limitations. Firstly, they consider that all words in a sentence have equal contributions in the sentence meaning representation and are not able to extract informative words. Secondly, they require a large number of training data to obtain considerable results while they have many parameters that must be accurately adjusted. To this end, a convolutional neural network integrated with a hierarchical attention layer is proposed which is able to extract informative words and assign them higher weight. Moreover, the effect of transfer learning that transfers knowledge learned in the source domain to the target domain with the aim of improving the performance is also explored. Based on the empirical results, the proposed model not only has higher classification accuracy and can extract informative words but also applying incremental transfer learning can significantly enhance the classification performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (2)

Summary

We haven't generated a summary for this paper yet.