Papers
Topics
Authors
Recent
2000 character limit reached

Evolutionary optimization of contexts for phonetic correction in speech recognition systems

Published 23 Feb 2021 in eess.AS, cs.CL, and cs.SD | (2102.11480v1)

Abstract: Automatic Speech Recognition (ASR) is an area of growing academic and commercial interest due to the high demand for applications that use it to provide a natural communication method. It is common for general purpose ASR systems to fail in applications that use a domain-specific language. Various strategies have been used to reduce the error, such as providing a context that modifies the LLM and post-processing correction methods. This article explores the use of an evolutionary process to generate an optimized context for a specific application domain, as well as different correction techniques based on phonetic distance metrics. The results show the viability of a genetic algorithm as a tool for context optimization, which, added to a post-processing correction based on phonetic representations, can reduce the errors on the recognized speech.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.