Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating the Sensitivity of Automatic Speech Recognition Systems to Phonetic Variation in L2 Englishes (2305.07389v1)

Published 12 May 2023 in cs.CL, cs.SD, and eess.AS

Abstract: Automatic Speech Recognition (ASR) systems exhibit the best performance on speech that is similar to that on which it was trained. As such, underrepresented varieties including regional dialects, minority-speakers, and low-resource languages, see much higher word error rates (WERs) than those varieties seen as 'prestigious', 'mainstream', or 'standard'. This can act as a barrier to incorporating ASR technology into the annotation process for large-scale linguistic research since the manual correction of the erroneous automated transcripts can be just as time and resource consuming as manual transcriptions. A deeper understanding of the behaviour of an ASR system is thus beneficial from a speech technology standpoint, in terms of improving ASR accuracy, and from an annotation standpoint, where knowing the likely errors made by an ASR system can aid in this manual correction. This work demonstrates a method of probing an ASR system to discover how it handles phonetic variation across a number of L2 Englishes. Specifically, how particular phonetic realisations which were rare or absent in the system's training data can lead to phoneme level misrecognitions and contribute to higher WERs. It is demonstrated that the behaviour of the ASR is systematic and consistent across speakers with similar spoken varieties (in this case the same L1) and phoneme substitution errors are typically in agreement with human annotators. By identifying problematic productions specific weaknesses can be addressed by sourcing such realisations for training and fine-tuning thus making the system more robust to pronunciation variation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Emma O'Neill (1 paper)
  2. Julie Carson-Berndsen (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.