Papers
Topics
Authors
Recent
2000 character limit reached

Data Engineering for Everyone

Published 23 Feb 2021 in cs.LG | (2102.11447v1)

Abstract: Data engineering is one of the fastest-growing fields within ML. As ML becomes more common, the appetite for data grows more ravenous. But ML requires more data than individual teams of data engineers can readily produce, which presents a severe challenge to ML deployment at scale. Much like the software-engineering revolution, where mass adoption of open-source software replaced the closed, in-house development model for infrastructure code, there is a growing need to enable rapid development and open contribution to massive machine learning data sets. This article shows that open-source data sets are the rocket fuel for research and innovation at even some of the largest AI organizations. Our analysis of nearly 2000 research publications from Facebook, Google and Microsoft over the past five years shows the widespread use and adoption of open data sets. Open data sets that are easily accessible to the public are vital to accelerating ML innovation for everyone. But such open resources are scarce in the wild. So, what if we are able to accelerate data-set creation via automatic data set generation tools?

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.