Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divide-and-conquer methods for big data analysis (2102.10771v1)

Published 22 Feb 2021 in stat.ML and cs.LG

Abstract: In the context of big data analysis, the divide-and-conquer methodology refers to a multiple-step process: first splitting a data set into several smaller ones; then analyzing each set separately; finally combining results from each analysis together. This approach is effective in handling large data sets that are unsuitable to be analyzed entirely by a single computer due to limits either from memory storage or computational time. The combined results will provide a statistical inference which is similar to the one from analyzing the entire data set. This article reviews some recently developments of divide-and-conquer methods in a variety of settings, including combining based on parametric, semiparametric and nonparametric models, online sequential updating methods, among others. Theoretical development on the efficiency of the divide-and-conquer methods is also discussed.

Citations (8)

Summary

We haven't generated a summary for this paper yet.