Papers
Topics
Authors
Recent
2000 character limit reached

Divide and Conquer Local Average Regression

Published 23 Jan 2016 in cs.LG, math.ST, and stat.TH | (1601.06239v2)

Abstract: The divide and conquer strategy, which breaks a massive data set into a se- ries of manageable data blocks, and then combines the independent results of data blocks to obtain a final decision, has been recognized as a state-of-the-art method to overcome challenges of massive data analysis. In this paper, we merge the divide and conquer strategy with local average regression methods to infer the regressive relationship of input-output pairs from a massive data set. After theoretically analyzing the pros and cons, we find that although the divide and conquer local average regression can reach the optimal learning rate, the restric- tion to the number of data blocks is a bit strong, which makes it only feasible for small number of data blocks. We then propose two variants to lessen (or remove) this restriction. Our results show that these variants can achieve the optimal learning rate with much milder restriction (or without such restriction). Extensive experimental studies are carried out to verify our theoretical assertions.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.