Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Policy-Aware Mobility Model Explains the Growth of COVID-19 in Cities (2102.10538v1)

Published 21 Feb 2021 in q-bio.PE and cs.CY

Abstract: With the continued spread of coronavirus, the task of forecasting distinctive COVID-19 growth curves in different cities, which remain inadequately explained by standard epidemiological models, is critical for medical supply and treatment. Predictions must take into account non-pharmaceutical interventions to slow the spread of coronavirus, including stay-at-home orders, social distancing, quarantine and compulsory mask-wearing, leading to reductions in intra-city mobility and viral transmission. Moreover, recent work associating coronavirus with human mobility and detailed movement data suggest the need to consider urban mobility in disease forecasts. Here we show that by incorporating intra-city mobility and policy adoption into a novel metapopulation SEIR model, we can accurately predict complex COVID-19 growth patterns in U.S. cities ($R2$ = 0.990). Estimated mobility change due to policy interventions is consistent with empirical observation from Apple Mobility Trends Reports (Pearson's R = 0.872), suggesting the utility of model-based predictions where data are limited. Our model also reproduces urban "superspreading", where a few neighborhoods account for most secondary infections across urban space, arising from uneven neighborhood populations and heightened intra-city churn in popular neighborhoods. Therefore, our model can facilitate location-aware mobility reduction policy that more effectively mitigates disease transmission at similar social cost. Finally, we demonstrate our model can serve as a fine-grained analytic and simulation framework that informs the design of rational non-pharmaceutical interventions policies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Zhenyu Han (23 papers)
  2. Fengli Xu (47 papers)
  3. Yong Li (628 papers)
  4. Tao Jiang (274 papers)
  5. Depeng Jin (72 papers)
  6. Jianhua Lu (28 papers)
  7. James A. Evans (22 papers)