Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EXTRA: Explanation Ranking Datasets for Explainable Recommendation (2102.10315v3)

Published 20 Feb 2021 in cs.IR

Abstract: Recently, research on explainable recommender systems has drawn much attention from both academia and industry, resulting in a variety of explainable models. As a consequence, their evaluation approaches vary from model to model, which makes it quite difficult to compare the explainability of different models. To achieve a standard way of evaluating recommendation explanations, we provide three benchmark datasets for EXplanaTion RAnking (denoted as EXTRA), on which explainability can be measured by ranking-oriented metrics. Constructing such datasets, however, poses great challenges. First, user-item-explanation triplet interactions are rare in existing recommender systems, so how to find alternatives becomes a challenge. Our solution is to identify nearly identical sentences from user reviews. This idea then leads to the second challenge, i.e., how to efficiently categorize the sentences in a dataset into different groups, since it has quadratic runtime complexity to estimate the similarity between any two sentences. To mitigate this issue, we provide a more efficient method based on Locality Sensitive Hashing (LSH) that can detect near-duplicates in sub-linear time for a given query. Moreover, we make our code publicly available to allow researchers in the community to create their own datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lei Li (1293 papers)
  2. Yongfeng Zhang (163 papers)
  3. Li Chen (590 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.