Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end neural network approach to 3D reservoir simulation and adaptation (2102.10304v2)

Published 20 Feb 2021 in cs.LG and physics.geo-ph

Abstract: Reservoir simulation and adaptation (also known as history matching) are typically considered as separate problems. While a set of models are aimed at the solution of the forward simulation problem assuming all initial geological parameters are known, the other set of models adjust geological parameters under the fixed forward simulation model to fit production data. This results in many difficulties for both reservoir engineers and developers of new efficient computation schemes. We present a unified approach to reservoir simulation and adaptation problems. A single neural network model allows a forward pass from initial geological parameters of the 3D reservoir model through dynamic state variables to well's production rates and backward gradient propagation to any model inputs and variables. The model fitting and geological parameters adaptation both become the optimization problem over specific parts of the same neural network model. Standard gradient-based optimization schemes can be used to find the optimal solution. Using real-world oilfield model and historical production rates we demonstrate that the suggested approach allows reservoir simulation and history matching with a benefit of several orders of magnitude simulation speed-up. Finally, to propagate this research we open-source a Python-based framework DeepField that allows standard processing of reservoir models and reproducing the approach presented in this paper.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. E. Illarionov (6 papers)
  2. P. Temirchev (1 paper)
  3. D. Voloskov (1 paper)
  4. R. Kostoev (1 paper)
  5. M. Simonov (1 paper)
  6. D. Pissarenko (1 paper)
  7. D. Orlov (1 paper)
  8. D. Koroteev (2 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com