Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning (2102.09907v3)

Published 19 Feb 2021 in stat.ML and cs.LG

Abstract: In offline reinforcement learning (RL) an optimal policy is learned solely from a priori collected observational data. However, in observational data, actions are often confounded by unobserved variables. Instrumental variables (IVs), in the context of RL, are the variables whose influence on the state variables is all mediated by the action. When a valid instrument is present, we can recover the confounded transition dynamics through observational data. We study a confounded Markov decision process where the transition dynamics admit an additive nonlinear functional form. Using IVs, we derive a conditional moment restriction through which we can identify transition dynamics based on observational data. We propose a provably efficient IV-aided Value Iteration (IVVI) algorithm based on a primal-dual reformulation of the conditional moment restriction. To our knowledge, this is the first provably efficient algorithm for instrument-aided offline RL.

Citations (31)

Summary

We haven't generated a summary for this paper yet.