Papers
Topics
Authors
Recent
Search
2000 character limit reached

Consistent Lock-free Parallel Stochastic Gradient Descent for Fast and Stable Convergence

Published 17 Feb 2021 in cs.DC and cs.DS | (2102.09032v1)

Abstract: Stochastic gradient descent (SGD) is an essential element in Machine Learning (ML) algorithms. Asynchronous parallel shared-memory SGD (AsyncSGD), including synchronization-free algorithms, e.g. HOGWILD!, have received interest in certain contexts, due to reduced overhead compared to synchronous parallelization. Despite that they induce staleness and inconsistency, they have shown speedup for problems satisfying smooth, strongly convex targets, and gradient sparsity. Recent works take important steps towards understanding the potential of parallel SGD for problems not conforming to these strong assumptions, in particular for deep learning (DL). There is however a gap in current literature in understanding when AsyncSGD algorithms are useful in practice, and in particular how mechanisms for synchronization and consistency play a role. We focus on the impact of consistency-preserving non-blocking synchronization in SGD convergence, and in sensitivity to hyper-parameter tuning. We propose Leashed-SGD, an extensible algorithmic framework of consistency-preserving implementations of AsyncSGD, employing lock-free synchronization, effectively balancing throughput and latency. We argue analytically about the dynamics of the algorithms, memory consumption, the threads' progress over time, and the expected contention. We provide a comprehensive empirical evaluation, validating the analytical claims, benchmarking the proposed Leashed-SGD framework, and comparing to baselines for training multilayer perceptrons (MLP) and convolutional neural networks (CNN). We observe the crucial impact of contention, staleness and consistency and show how Leashed-SGD provides significant improvements in stability as well as wall-clock time to convergence (from 20-80% up to 4x improvements) compared to the standard lock-based AsyncSGD algorithm and HOGWILD!, while reducing the overall memory footprint.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.