Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual Skipgram: Training Word Representation Using Context Information (2102.08565v1)

Published 17 Feb 2021 in cs.CL and cs.LG

Abstract: The skip-gram (SG) model learns word representation by predicting the words surrounding a center word from unstructured text data. However, not all words in the context window contribute to the meaning of the center word. For example, less relevant words could be in the context window, hindering the SG model from learning a better quality representation. In this paper, we propose an enhanced version of the SG that leverages context information to produce word representation. The proposed model, Contextual Skip-gram, is designed to predict contextual words with both the center words and the context information. This simple idea helps to reduce the impact of irrelevant words on the training process, thus enhancing the final performance

Citations (1)

Summary

We haven't generated a summary for this paper yet.