Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Disturbing Reinforcement Learning Agents with Corrupted Rewards (2102.06587v1)

Published 12 Feb 2021 in cs.LG and cs.AI

Abstract: Reinforcement Learning (RL) algorithms have led to recent successes in solving complex games, such as Atari or Starcraft, and to a huge impact in real-world applications, such as cybersecurity or autonomous driving. In the side of the drawbacks, recent works have shown how the performance of RL algorithms decreases under the influence of soft changes in the reward function. However, little work has been done about how sensitive these disturbances are depending on the aggressiveness of the attack and the learning exploration strategy. In this paper, we propose to fill this gap in the literature analyzing the effects of different attack strategies based on reward perturbations, and studying the effect in the learner depending on its exploration strategy. In order to explain all the behaviors, we choose a sub-class of MDPs: episodic, stochastic goal-only-rewards MDPs, and in particular, an intelligible grid domain as a benchmark. In this domain, we demonstrate that smoothly crafting adversarial rewards are able to mislead the learner, and that using low exploration probability values, the policy learned is more robust to corrupt rewards. Finally, in the proposed learning scenario, a counterintuitive result arises: attacking at each learning episode is the lowest cost attack strategy.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube