Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Improving Artificial Teachers by Considering How People Learn and Forget (2102.04174v3)

Published 8 Feb 2021 in cs.HC and cs.AI

Abstract: The paper presents a novel model-based method for intelligent tutoring, with particular emphasis on the problem of selecting teaching interventions in interaction with humans. Whereas previous work has focused on either personalization of teaching or optimization of teaching intervention sequences, the proposed individualized model-based planning approach represents convergence of these two lines of research. Model-based planning picks the best interventions via interactive learning of a user memory model's parameters. The approach is novel in its use of a cognitive model that can account for several key individual- and material-specific characteristics related to recall/forgetting, along with a planning technique that considers users' practice schedules. Taking a rule-based approach as a baseline, the authors evaluated the method's benefits in a controlled study of artificial teaching in second-language vocabulary learning (N=53).

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com