Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fast and integrative algorithm for clustering performance evaluation in author name disambiguation (2102.03251v1)

Published 5 Feb 2021 in cs.DL, cs.DB, and cs.IR

Abstract: Author name disambiguation results are often evaluated by measures such as Cluster-F, K-metric, Pairwise-F, Splitting & Lumping Error, and B-cubed. Although these measures have distinctive evaluation schemes, this paper shows that they can be calculated in a single framework by a set of common steps that compare truth and predicted clusters through two hash tables recording information about name instances with their predicted cluster indices and frequencies of those indices per truth cluster. This integrative calculation reduces greatly calculation runtime, which is scalable to a clustering task involving millions of name instances within a few seconds. During the integration process, B-cubed and K-metric are shown to produce the same precision and recall scores. In this framework, especially, name instance pairs for Pairwise-F are counted using a heuristic, surpassing a state-of-the-art algorithm in speedy calculation. Details of the integrative calculation are described with examples and pseudo-code to assist scholars to implement each measure easily and validate the correctness of implementation. The integrative calculation will help scholars compare similarities and differences of multiple measures before they select ones that characterize best the clustering performances of their disambiguation methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.