Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of Microphone Clusters in Acoustic Sensor Networks using Unsupervised Federated Learning (2102.03109v2)

Published 5 Feb 2021 in eess.AS and cs.SD

Abstract: In this paper we present a privacy-aware method for estimating source-dominated microphone clusters in the context of acoustic sensor networks (ASNs). The approach is based on clustered federated learning which we adapt to unsupervised scenarios by employing a light-weight autoencoder model. The model is further optimized for training on very scarce data. In order to best harness the benefits of clustered microphone nodes in ASN applications, a method for the computation of cluster membership values is introduced. We validate the performance of the proposed approach using clustering-based measures and a network-wide classification task.

Citations (6)

Summary

We haven't generated a summary for this paper yet.