Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Generation Using Pass-phrase-dependent Deep Auto-encoders for Text-Dependent Speaker Verification (2102.02074v1)

Published 3 Feb 2021 in cs.SD, cs.LG, and eess.AS

Abstract: In this paper, we propose a novel method that trains pass-phrase specific deep neural network (PP-DNN) based auto-encoders for creating augmented data for text-dependent speaker verification (TD-SV). Each PP-DNN auto-encoder is trained using the utterances of a particular pass-phrase available in the target enroLLMent set with two methods: (i) transfer learning and (ii) training from scratch. Next, feature vectors of a given utterance are fed to the PP-DNNs and the output from each PP-DNN at frame-level is considered one new set of generated data. The generated data from each PP-DNN is then used for building a TD-SV system in contrast to the conventional method that considers only the evaluation data available. The proposed approach can be considered as the transformation of data to the pass-phrase specific space using a non-linear transformation learned by each PP-DNN. The method develops several TD-SV systems with the number equal to the number of PP-DNNs separately trained for each pass-phrases for the evaluation. Finally, the scores of the different TD-SV systems are fused for decision making. Experiments are conducted on the RedDots challenge 2016 database for TD-SV using short utterances. Results show that the proposed method improves the performance for both conventional cepstral feature and deep bottleneck feature using both Gaussian mixture model - universal background model (GMM-UBM) and i-vector framework.

Summary

We haven't generated a summary for this paper yet.