Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

1000 Pupil Segmentations in a Second using Haar Like Features and Statistical Learning (2102.01921v1)

Published 3 Feb 2021 in eess.IV and cs.CV

Abstract: In this paper we present a new approach for pupil segmentation. It can be computed and trained very efficiently, making it ideal for online use for high speed eye trackers as well as for energy saving pupil detection in mobile eye tracking. The approach is inspired by the BORE and CBF algorithms and generalizes the binary comparison by Haar features. Since these features are intrinsically very susceptible to noise and fluctuating light conditions, we combine them with conditional pupil shape probabilities. In addition, we also rank each feature according to its importance in determining the pupil shape. Another advantage of our method is the use of statistical learning, which is very efficient and can even be used online. https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%2FStatsPupil&mode=list

Citations (16)

Summary

We haven't generated a summary for this paper yet.