Papers
Topics
Authors
Recent
2000 character limit reached

On Greedy Approaches to Hierarchical Aggregation

Published 2 Feb 2021 in cs.DS | (2102.01730v3)

Abstract: We analyze greedy algorithms for the Hierarchical Aggregation (HAG) problem, a strategy introduced in [Jia et al., KDD 2020] for speeding up learning on Graph Neural Networks (GNNs). The idea of HAG is to identify and remove redundancies in computations performed when training GNNs. The associated optimization problem is to identify and remove the most redundancies. Previous work introduced a greedy approach for the HAG problem and claimed a 1-1/e approximation factor. We show by example that this is not correct, and one cannot hope for better than a 1/2 approximation factor. We prove that this greedy algorithm does satisfy some (weaker) approximation guarantee, by showing a new connection between the HAG problem and maximum matching problems in hypergraphs. We also introduce a second greedy algorithm which can out-perform the first one, and we show how to implement it efficiently in some parameter regimes. Finally, we introduce some greedy heuristics that are much faster than the above greedy algorithms, and we demonstrate that they perform well on real-world graphs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.