Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning with Probabilistic Boolean Network Models of Smart Grid Devices (2102.01297v1)

Published 2 Feb 2021 in cs.LG, cs.SY, and eess.SY

Abstract: The area of Smart Power Grids needs to constantly improve its efficiency and resilience, to pro-vide high quality electrical power, in a resistant grid, managing faults and avoiding failures. Achieving this requires high component reliability, adequate maintenance, and a studied failure occurrence. Correct system operation involves those activities, and novel methodologies to detect, classify, and isolate faults and failures, model and simulate processes with predictive algorithms and analytics (using data analysis and asset condition to plan and perform activities). We show-case the application of a complex-adaptive, self-organizing modeling method, Probabilistic Boolean Networks (PBN), as a way towards the understanding of the dynamics of smart grid devices, and to model and characterize their behavior. This work demonstrates that PBNs are is equivalent to the standard Reinforcement Learning Cycle, in which the agent/model has an inter-action with its environment and receives feedback from it in the form of a reward signal. Differ-ent reward structures were created in order to characterize preferred behavior. This information can be used to guide the PBN to avoid fault conditions and failures.

Citations (4)

Summary

We haven't generated a summary for this paper yet.