Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

NL-CNN: A Resources-Constrained Deep Learning Model based on Nonlinear Convolution (2102.00227v1)

Published 30 Jan 2021 in cs.LG, cs.CV, and cs.NE

Abstract: A novel convolution neural network model, abbreviated NL-CNN is proposed, where nonlinear convolution is emulated in a cascade of convolution + nonlinearity layers. The code for its implementation and some trained models are made publicly available. Performance evaluation for several widely known datasets is provided, showing several relevant features: i) for small / medium input image sizes the proposed network gives very good testing accuracy, given a low implementation complexity and model size; ii) compares favorably with other widely known resources-constrained models, for instance in comparison to MobileNetv2 provides better accuracy with several times less training times and up to ten times less parameters (memory occupied by the model); iii) has a relevant set of hyper-parameters which can be easily and rapidly tuned due to the fast training specific to it. All these features make NL-CNN suitable for IoT, smart sensing, bio-medical portable instrumentation and other applications where artificial intelligence must be deployed in energy-constrained environments.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.