Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The growth of COVID-19 scientific literature: A forecast analysis of different daily time series in specific settings (2101.12455v2)

Published 29 Jan 2021 in cs.DL

Abstract: We present a forecasting analysis on the growth of scientific literature related to COVID-19 expected for 2021. Considering the paramount scientific and financial efforts made by the research community to find solutions to end the COVID-19 pandemic, an unprecedented volume of scientific outputs is being produced. This questions the capacity of scientists, politicians and citizens to maintain infrastructure, digest content and take scientifically informed decisions. A crucial aspect is to make predictions to prepare for such a large corpus of scientific literature. Here we base our predictions on the ARIMA model and use two different data sources: the Dimensions and World Health Organization COVID-19 databases. These two sources have the particularity of including in the metadata information the date in which papers were indexed. We present global predictions, plus predictions in three specific settings: type of access (Open Access), NLM source (PubMed and PMC), and domain-specific repository (SSRN and MedRxiv). We conclude by discussing our findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (5)

Summary

We haven't generated a summary for this paper yet.