Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Private DNA Sequencing: Hiding Information in Discrete Noise (2101.12124v2)

Published 28 Jan 2021 in cs.IT, cs.CR, and math.IT

Abstract: When an individual's DNA is sequenced, sensitive medical information becomes available to the sequencing laboratory. A recently proposed way to hide an individual's genetic information is to mix in DNA samples of other individuals. We assume that the genetic content of these samples is known to the individual but unknown to the sequencing laboratory. Thus, these DNA samples act as "noise" to the sequencing laboratory, but still allow the individual to recover their own DNA samples afterward. Motivated by this idea, we study the problem of hiding a binary random variable $X$ (a genetic marker) with the additive noise provided by mixing DNA samples, using mutual information as a privacy metric. This is equivalent to the problem of finding a worst-case noise distribution for recovering $X$ from the noisy observation among a set of feasible discrete distributions. We characterize upper and lower bounds to the solution of this problem, which are empirically shown to be very close. The lower bound is obtained through a convex relaxation of the original discrete optimization problem, and yields a closed-form expression. The upper bound is computed via a greedy algorithm for selecting the mixing proportions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.