Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SkillNER: Mining and Mapping Soft Skills from any Text (2101.11431v2)

Published 22 Jan 2021 in cs.CL and cs.IR

Abstract: In today's digital world, there is an increasing focus on soft skills. On the one hand, they facilitate innovation at companies, but on the other, they are unlikely to be automated soon. Researchers struggle with accurately approaching quantitatively the study of soft skills due to the lack of data-driven methods to retrieve them. This limits the possibility for psychologists and HR managers to understand the relation between humans and digitalisation. This paper presents SkillNER, a novel data-driven method for automatically extracting soft skills from text. It is a named entity recognition (NER) system trained with a support vector machine (SVM) on a corpus of more than 5000 scientific papers. We developed this system by measuring the performance of our approach against different training models and validating the results together with a team of psychologists. Finally, SkillNER was tested in a real-world case study using the job descriptions of ESCO (European Skill/Competence Qualification and Occupation) as textual source. The system enabled the detection of communities of job profiles based on their shared soft skills and communities of soft skills based on their shared job profiles. This case study demonstrates that the tool can automatically retrieve soft skills from a large corpus in an efficient way, proving useful for firms, institutions, and workers. The tool is open and available online to foster quantitative methods for the study of soft skills.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Silvia Fareri (3 papers)
  2. Nicola Melluso (5 papers)
  3. Filippo Chiarello (5 papers)
  4. Gualtiero Fantoni (4 papers)
Citations (44)