Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Practical Robustness Analysis for DNNs based on PAC-Model Learning (2101.10102v2)

Published 25 Jan 2021 in cs.LG, cs.AI, and stat.ML

Abstract: To analyse local robustness properties of deep neural networks (DNNs), we present a practical framework from a model learning perspective. Based on black-box model learning with scenario optimisation, we abstract the local behaviour of a DNN via an affine model with the probably approximately correct (PAC) guarantee. From the learned model, we can infer the corresponding PAC-model robustness property. The innovation of our work is the integration of model learning into PAC robustness analysis: that is, we construct a PAC guarantee on the model level instead of sample distribution, which induces a more faithful and accurate robustness evaluation. This is in contrast to existing statistical methods without model learning. We implement our method in a prototypical tool named DeepPAC. As a black-box method, DeepPAC is scalable and efficient, especially when DNNs have complex structures or high-dimensional inputs. We extensively evaluate DeepPAC, with 4 baselines (using formal verification, statistical methods, testing and adversarial attack) and 20 DNN models across 3 datasets, including MNIST, CIFAR-10, and ImageNet. It is shown that DeepPAC outperforms the state-of-the-art statistical method PROVERO, and it achieves more practical robustness analysis than the formal verification tool ERAN. Also, its results are consistent with existing DNN testing work like DeepGini.

Citations (13)

Summary

We haven't generated a summary for this paper yet.