Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

With Measured Words: Simple Sentence Selection for Black-Box Optimization of Sentence Compression Algorithms (2101.10096v1)

Published 25 Jan 2021 in cs.CL

Abstract: Sentence Compression is the task of generating a shorter, yet grammatical version of a given sentence, preserving the essence of the original sentence. This paper proposes a Black-Box Optimizer for Compression (B-BOC): given a black-box compression algorithm and assuming not all sentences need be compressed -- find the best candidates for compression in order to maximize both compression rate and quality. Given a required compression ratio, we consider two scenarios: (i) single-sentence compression, and (ii) sentences-sequence compression. In the first scenario, our optimizer is trained to predict how well each sentence could be compressed while meeting the specified ratio requirement. In the latter, the desired compression ratio is applied to a sequence of sentences (e.g., a paragraph) as a whole, rather than on each individual sentence. To achieve that, we use B-BOC to assign an optimal compression ratio to each sentence, then cast it as a Knapsack problem, which we solve using bounded dynamic programming. We evaluate B-BOC on both scenarios on three datasets, demonstrating that our optimizer improves both accuracy and Rouge-F1-score compared to direct application of other compression algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.