Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain-Dependent Speaker Diarization for the Third DIHARD Challenge (2101.09884v1)

Published 25 Jan 2021 in cs.SD, cs.LG, and eess.AS

Abstract: This report presents the system developed by the ABSP Laboratory team for the third DIHARD speech diarization challenge. Our main contribution in this work is to develop a simple and efficient solution for acoustic domain dependent speech diarization. We explore speaker embeddings for \emph{acoustic domain identification} (ADI) task. Our study reveals that i-vector based method achieves considerably better performance than x-vector based approach in the third DIHARD challenge dataset. Next, we integrate the ADI module with the diarization framework. The performance substantially improved over that of the baseline when we optimized the thresholds for agglomerative hierarchical clustering and the parameters for dimensionality reduction during scoring for individual acoustic domains. We achieved a relative improvement of $9.63\%$ and $10.64\%$ in DER for core and full conditions, respectively, for Track 1 of the DIHARD III evaluation set.

Citations (3)

Summary

We haven't generated a summary for this paper yet.