Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Expert Consistency to Improve Algorithmic Decision Support (2101.09648v3)

Published 24 Jan 2021 in cs.LG and cs.HC

Abstract: Machine learning (ML) is increasingly being used to support high-stakes decisions. However, there is frequently a construct gap: a gap between the construct of interest to the decision-making task and what is captured in proxies used as labels to train ML models. As a result, ML models may fail to capture important dimensions of decision criteria, hampering their utility for decision support. Thus, an essential step in the design of ML systems for decision support is selecting a target label among available proxies. In this work, we explore the use of historical expert decisions as a rich -- yet also imperfect -- source of information that can be combined with observed outcomes to narrow the construct gap. We argue that managers and system designers may be interested in learning from experts in instances where they exhibit consistency with each other, while learning from observed outcomes otherwise. We develop a methodology to enable this goal using information that is commonly available in organizational information systems. This involves two core steps. First, we propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert. Second, we introduce a label amalgamation approach that allows ML models to simultaneously learn from expert decisions and observed outcomes. Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap, yielding better predictive performance than learning from either observed outcomes or expert decisions alone.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Maria De-Arteaga (36 papers)
  2. Vincent Jeanselme (10 papers)
  3. Artur Dubrawski (67 papers)
  4. Alexandra Chouldechova (46 papers)
Citations (21)
Youtube Logo Streamline Icon: https://streamlinehq.com