Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Change-Point Based Control Chart for Detecting Sparse Changes in High-Dimensional Heteroscedastic Data

Published 23 Jan 2021 in stat.ME | (2101.09424v1)

Abstract: Because of the curse-of-dimensionality, high-dimensional processes present challenges to traditional multivariate statistical process monitoring (SPM) techniques. In addition, the unknown underlying distribution and complicated dependency among variables such as heteroscedasticity increase uncertainty of estimated parameters, and decrease the effectiveness of control charts. In addition, the requirement of sufficient reference samples limits the application of traditional charts in high dimension low sample size scenarios (small n, large p). More difficulties appear in detecting and diagnosing abnormal behaviors that are caused by a small set of variables, i.e., sparse changes. In this article, we propose a changepoint based control chart to detect sparse shifts in the mean vector of high-dimensional heteroscedastic processes. Our proposed method can start monitoring when the number of observations is a lot smaller than the dimensionality. The simulation results show its robustness to nonnormality and heteroscedasticity. A real data example is used to illustrate the effectiveness of the proposed control chart in high-dimensional applications. Supplementary material and code are provided online.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.