Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Separation between the Degree of a Boolean Function and the Block Sensitivity

Published 21 Jan 2021 in cs.CC | (2101.08600v2)

Abstract: In this paper we study the separation between two complexity measures: the degree of a Boolean function as a polynomial over the reals and its block sensitivity. We show that separation between these two measures can be improved from $ d2(f) \geq bs(f) $, established by Tal, to $ d2(f) \geq (\sqrt{10} - 2)bs(f) $. As a corollary, we show that separations between some other complexity measures are not tight as well, for instance, we can improve recent sensitivity conjecture result by Huang to $s4(f) \geq (\sqrt{10} - 2)bs(f)$. Our techniques are based on paper by Nisan and Szegedy and include more detailed analysis of a symmetrization polynomial. In our next result we show the same type of improvement in the separation between the approximate degree of a Boolean function and its block sensitivity: we show that $deg_{1/3}2(f) \geq \sqrt{6/101} bs(f)$ and improve the previous result by Nisan and Szegedy $ deg_{1/3}(f) \geq \sqrt{bs(f)/6} $. In addition, we construct an example which shows that gap between constants in the lower bound and in the known upper bound is less than $0.2$. In our last result we study the properties of conjectured fully sensitive function on 10 variables of degree 4, existence of which would lead to improvement of the biggest known gap between these two measures. We prove that there is the only univariate polynomial that can be achieved by symmetrization of this function by using the combination of interpolation and linear programming techniques.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.