Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TDA-Net: Fusion of Persistent Homology and Deep Learning Features for COVID-19 Detection in Chest X-Ray Images (2101.08398v4)

Published 21 Jan 2021 in cs.CV, cs.LG, and eess.IV

Abstract: Topological Data Analysis (TDA) has emerged recently as a robust tool to extract and compare the structure of datasets. TDA identifies features in data such as connected components and holes and assigns a quantitative measure to these features. Several studies reported that topological features extracted by TDA tools provide unique information about the data, discover new insights, and determine which feature is more related to the outcome. On the other hand, the overwhelming success of deep neural networks in learning patterns and relationships has been proven on a vast array of data applications, images in particular. To capture the characteristics of both powerful tools, we propose \textit{TDA-Net}, a novel ensemble network that fuses topological and deep features for the purpose of enhancing model generalizability and accuracy. We apply the proposed \textit{TDA-Net} to a critical application, which is the automated detection of COVID-19 from CXR images. The experimental results showed that the proposed network achieved excellent performance and suggests the applicability of our method in practice.

Citations (19)

Summary

We haven't generated a summary for this paper yet.