Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Diagnosis of Asthma using Hilbert-Huang Transform and Deep Learning on Lung Sounds (2101.08288v1)

Published 20 Jan 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Lung auscultation is the most effective and indispensable method for diagnosing various respiratory disorders by using the sounds from the airways during inspirium and exhalation using a stethoscope. In this study, the statistical features are calculated from intrinsic mode functions that are extracted by applying the HilbertHuang Transform to the lung sounds from 12 different auscultation regions on the chest and back. The classification of the lung sounds from asthma and healthy subjects is performed using Deep Belief Networks (DBN). The DBN classifier model with two hidden layers has been tested using 5-fold cross validation method. The proposed DBN separated lung sounds from asthmatic and healthy subjects with high classification performance rates of 84.61%, 85.83%, and 77.11% for overall accuracy, sensitivity, and selectivity, respectively using frequencytime analysis.

Citations (7)

Summary

We haven't generated a summary for this paper yet.