Papers
Topics
Authors
Recent
Search
2000 character limit reached

Synthesizing Context-free Grammars from Recurrent Neural Networks (Extended Version)

Published 20 Jan 2021 in cs.FL and cs.LG | (2101.08200v3)

Abstract: We present an algorithm for extracting a subclass of the context free grammars (CFGs) from a trained recurrent neural network (RNN). We develop a new framework, pattern rule sets (PRSs), which describe sequences of deterministic finite automata (DFAs) that approximate a non-regular language. We present an algorithm for recovering the PRS behind a sequence of such automata, and apply it to the sequences of automata extracted from trained RNNs using the L* algorithm. We then show how the PRS may converted into a CFG, enabling a familiar and useful presentation of the learned language. Extracting the learned language of an RNN is important to facilitate understanding of the RNN and to verify its correctness. Furthermore, the extracted CFG can augment the RNN in classifying correct sentences, as the RNN's predictive accuracy decreases when the recursion depth and distance between matching delimiters of its input sequences increases.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.