Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIMOSA: Reducing Malware Analysis Overhead with Coverings (2101.07328v1)

Published 18 Jan 2021 in cs.CR

Abstract: There is a growing body of malware samples that evade automated analysis and detection tools. Malware may measure fingerprints ("artifacts") of the underlying analysis tool or environment and change their behavior when artifacts are detected. While analysis tools can mitigate artifacts to reduce exposure, such concealment is expensive. However, not every sample checks for every type of artifact-analysis efficiency can be improved by mitigating only those artifacts most likely to be used by a sample. Using that insight, we propose MIMOSA, a system that identifies a small set of "covering" tool configurations that collectively defeat most malware samples with increased efficiency. MIMOSA identifies a set of tool configurations that maximize analysis throughput and detection accuracy while minimizing manual effort, enabling scalable automation to analyze stealthy malware. We evaluate our approach against a benchmark of 1535 labeled stealthy malware samples. Our approach increases analysis throughput over state of the art on over 95% of these samples. We also investigate cost-benefit tradeoffs between the fraction of successfully-analyzed samples and computing resources required. MIMOSA provides a practical, tunable method for efficiently deploying analysis resources.

Citations (8)

Summary

We haven't generated a summary for this paper yet.