Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PLUMENet: Efficient 3D Object Detection from Stereo Images (2101.06594v3)

Published 17 Jan 2021 in cs.CV

Abstract: 3D object detection is a key component of many robotic applications such as self-driving vehicles. While many approaches rely on expensive 3D sensors such as LiDAR to produce accurate 3D estimates, methods that exploit stereo cameras have recently shown promising results at a lower cost. Existing approaches tackle this problem in two steps: first depth estimation from stereo images is performed to produce a pseudo LiDAR point cloud, which is then used as input to a 3D object detector. However, this approach is suboptimal due to the representation mismatch, as the two tasks are optimized in two different metric spaces. In this paper we propose a model that unifies these two tasks and performs them in the same metric space. Specifically, we directly construct a pseudo LiDAR feature volume (PLUME) in 3D space, which is then used to solve both depth estimation and object detection tasks. Our approach achieves state-of-the-art performance with much faster inference times when compared to existing methods on the challenging KITTI benchmark.

Citations (34)

Summary

We haven't generated a summary for this paper yet.