Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Search Algorithms for Rank-Constrained Convex Optimization (2101.06262v1)

Published 15 Jan 2021 in cs.LG

Abstract: We propose greedy and local search algorithms for rank-constrained convex optimization, namely solving $\underset{\mathrm{rank}(A)\leq r*}{\min}\, R(A)$ given a convex function $R:\mathbb{R}{m\times n}\rightarrow \mathbb{R}$ and a parameter $r*$. These algorithms consist of repeating two steps: (a) adding a new rank-1 matrix to $A$ and (b) enforcing the rank constraint on $A$. We refine and improve the theoretical analysis of Shalev-Shwartz et al. (2011), and show that if the rank-restricted condition number of $R$ is $\kappa$, a solution $A$ with rank $O(r*\cdot \min{\kappa \log \frac{R(\mathbf{0})-R(A*)}{\epsilon}, \kappa2})$ and $R(A) \leq R(A*) + \epsilon$ can be recovered, where $A*$ is the optimal solution. This significantly generalizes associated results on sparse convex optimization, as well as rank-constrained convex optimization for smooth functions. We then introduce new practical variants of these algorithms that have superior runtime and recover better solutions in practice. We demonstrate the versatility of these methods on a wide range of applications involving matrix completion and robust principal component analysis.

Citations (4)

Summary

We haven't generated a summary for this paper yet.